Publications

Publications and References


  1. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography.,” Opt. Lett. 32, 912–914 (2007).
  2. J. Rosen and G. Brooker, “Fluorescence incoherent color holography.,” Opt. Express 15, 2244–2250 (2007).
  3. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
  4. G. Brooker, N. Siegel, V. Wang, and J. Rosen, “Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy.,” Opt. Express 19, 5047–62 (2011).
  5. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging.,” Opt. Express 19, 26249–68 (2011).
  6. N. Siegel, J. Rosen, and G. Brooker, “Reconstruction of objects above and below the objective focal plane with dimensional fidelity by FINCH fluorescence microscopy.,” Opt. Express 20, 19822–35 (2012).
  7. N. Siegel, J. Rosen, and G. Brooker, “Faithful reconstruction of digital holograms captured by FINCH using a Hamming window function in the Fresnel propagation.,” Opt. Lett. 38, 3922–3925 (2013).
  8. G. Brooker, N. Siegel, J. Rosen, N. Hashimoto, M. Kurihara, and A. Tanabe, “In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens.,” Opt. Lett. 38, 5264–7 (2013).
  9. N. Siegel and G. Brooker, “Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.,” Opt. Express 22, 22298–307 (2014).
  10. N. Siegel, B. Storrie, M. Bruce, and G. Brooker, “CINCH (confocal incoherent correlation holography) high spatial resolution super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography),” Proc. SPIE 9336, 93360S (2015).
  11. N. Siegel, V. Lupashin, B. Storrie, and G. Brooker, “High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers,” Nat. Photonics 10, 802–808 (2016).
  12. T. Kim and T. Poon, “Reconstruction of Holograms with automatic extraction of distance parameter,” 1–3 (2009).
  13. Y. Rivenson, A. Stern, and B. Javidi, “Overview of compressive sensing techniques applied in holography [Invited],” Appl. Opt. 52, A423 (2013).
  14. J. Weng, D. C. Clark, and M. K. Kim, “Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography,” Opt. Commun. 366, 88–93 (2016).
  15. N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam : lensless single-exposure 3D imaging,” Optica 5, (2018).
  16. Y. Sun, Z. Xia, and U. S. Kamilov, “Efficient and accurate inversion of multiple scattering with deep learning,” 26, 1554–1561 (2018).
  17. “Global Super-Resolution Microscope Market Research Report 2017,” Mark. Res. Store (2017).
  18. “Microscope Market Size, Share & Trends Analysis Report By Product Type (Optical, Electron, Scanning Probe), By Application (Material Science, Nanotechnology), And Segment Forecasts, 2018 – 2024,” Gd. View Res. (2018).
  19. “Technologies Enabling Super-resolution Biomedical Imaging Redrawing the Boundaries of Medical Imaging,” TechVision Group, Frost and Sullivan (2017).

Leave a Reply

Your email address will not be published. Required fields are marked *